LUtCHOtt MAtRAVERS

primaru sctool

EYFS to Year 6 Progression Document

Using the maths progression document

As a planning tool to help you to:
\diamond Choose appropriate learning objectives
\diamond Pitch the work to the needs of the children
\diamond Move children in small steps to be secure in each objective. You should not move them on too fast. You should take into consideration their starting point
\diamond Challenge high attainers: you should deepen their understanding and develop their reasoning skills within the objectives
\diamond Use the previous year's objective to pre-teach if needed
\diamond Identify gaps for a particular child or a group of children. You should fill these gaps in guided maths sessions
\diamond Develop your subject knowledge
You should use this document alongside the calculation policy to ensure appropriate strategies and clear progression.

NRICH Activities linked (G - Games/ I - Investigation)

Lytch	Matravers Primary School	Mathematics Progression Document				S West 2021	
	$\begin{gathered} \text { EYFS } \\ (30-50 \mathrm{mths} \text { to ELGs }) \end{gathered}$	K Statutory Curri Non-Statutory Cu Teacher Assessin	S1 culum Guidance rriculum Guidance ment Framework		Statutory Curric Non-Statutory Cur	S2 culum Guidance rriculum Guidance	
	Three and Four-Year-Olds Reception Early Learning Goals	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Use a wider range of vocabulary Understand why questions such as "why do you think...? Understand a question or instruction that has two parts, such as: "Get your coat and wait at the door". Use talk to help work out problems and organise thinking and activities, and to explain how things work and why they might happen. Use talk to help work out problems and organise thinking and activities, and to explain how things work and why they might happen. Use new vocabulary in different contexts	To read and spell mathematical vocabulary, at a level consistent with their increasing word reading and spelling knowledge at year 1 .	To read and spell mathematical vocabulary, at a level consistent with their increasing word reading and spelling knowledge at key stage 1.	To read and spell mathematical vocabulary correctly and confidently, using their growing word reading knowledge and their knowledge of spelling.	To read and spell mathematical vocabulary correctly and confidently, using their growing word reading knowledge and their knowledge of spelling.	To read, spell and pronounce mathematical vocabulary correctly.	To read, spell and pronounce mathematical vocabulary correctly.

Lytch	It Matravers Primary School		Ma	rogression Document			S West 2021
	EYFS (30-50mths to ELGs)	Statutory Curric Non-Statutory Cur Teacher Assessm	S1 culum Guidance riculum Guidance nent Framework		Statutory Curri Non-Statutory Cu	S2 culum Guidance rriculum Guidance	
$\begin{aligned} & \bar{E} \\ & \bar{Z} \frac{\breve{\pi}}{\mathbf{\pi}} \end{aligned}$	Three and Four-Year-Olds Reception Early Learning Goals	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Recite numbers past 5. Say one number for each item in order: 1,2,3,4,5. Know that the last number reached when counting a small set of objects tells you how many there are in total ('cardinal principle'). Count objects, actions and sounds. Count beyond ten. Verbally count beyond 20, recognising the pattern of the counting system. Incey Wincey Shopping - Pirate Poundland Number Book Hidden Jewels Number Talks	To count to and across 100, forwards and backwards, beginning with 0 or 1 , or from any given number. To identify one more and one less than a given number. To count in multiples of twos, fives and tens from different multiples to develop their recognition of patterns in the number system, including varied and frequent practice through increasingly complex questions. Biscuit Decorations * Writing Digits * Grouping Goodies Same Length Trains (I) * Shut the Box (G) * To recognise and create repeating patterns with objects and with shapes.	To count in steps of 2, 3 , and 5 from 0 , and in tens from any number, forward and backward. Buzzy Bee Five Steps to 50	To continue to count in ones, tens and hundreds, so that pupils become fluent in the order and place value of numbers to 1,000. To count from 0 in multiples of 4, 8, 50 and 100.	To count in tens and hundreds, and maintain fluency in other multiples through varied and frequent practice. To count in multiples of 6, 7, 9, 25 and 1000. Count Me In * To count backwards through zero to include negative numbers. To find 1000 more or less than a given number. What Distance?	To count forwards or backwards in steps of powers of 10 for any given number up to 1,000,000. Space Distances * To interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero. Swimming Pool Tug Harder! (G) * Sea Level	

Lytch	Schod		Ma	rogression Document			S West 2021
	Develop fast recognition of up to 3 objects, without having to count them individually ('subitising'). Show "finger numbers' up to 5. Link numerals and amounts: for example, showing the right number of objects to match the numeral, up to 5 . Experiment with their own symbols and marks as well as numerals. Subitise. Link the number symbol (numeral) with its cardinal number value. Subitise (recognise quantities without counting) up to 5. Dice Owl's Packing List Show Me Estimation Station	To identify and represent numbers using objects and pictorial representations including the number line Dotty Six * All Change * Eightness of Eight *	$\left\|\begin{array}{c}\text { To identify, represent } \\ \text { and estimate numbers } \\ \text { using different } \\ \text { representations, } \\ \text { including the number } \\ \text { line } \\ \text { Tug of War (G) * }\end{array}\right\|$	To Identify, represent and estimate numbers using different representations	To identify, represent and estimate numbers using different representations Representing Numbers *		
	Link numerals and amounts: for example, showing the right number of objects to match the numeral, up to 5 . Experiment with their own symbols and marks as well as numerals. Link the number symbol (numeral) with its cardinal number value.	To read and write numbers from 1 to 20 in numerals and words. To count, read and write numbers to 100 in numerals. Count the Digits * What's in a Name?	To read and write numbers to at least 100 in numerals and in words.	To read and write numbers up to 1,000 in numerals and in words.		To read and write numbers to at least 1,000,000 and determine the value of each digit.	To say, read and write, numbers up to 10,000,000 accurately and determine the value of each digit.

Lytch	travers Primary School		Mathematics	Progression Document			S West 2021
	Compare quantities using language: 'more than', 'fewer than'. Begin to describe a sequence of events, real or fictional, using words such as 'first', 'then...' Compare numbers. Understand the 'one more than/one less than' relationship between consecutive numbers. Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity.	To use the language of: equal to, more than, less than (fewer), most, least Making Sticks ** Robot Monsters (1) * Dotty Six * All Change	To compare and order numbers from 0 up to $100 ;$ use $<,>$ and $=$ signs. $\frac{\text { Next Domino * }}{\text { Domino Number }}$ $\frac{\text { Patterns ** }}{\text { Domino Sequences * }}$ $\frac{100 \text { Square Jigsaw (I) * }}{\text { That Number Square! * }}$	To compare and order numbers up to 1,000 .	To order and compare numbers beyond 1,000. Ordering Journeys ** (Fractions: Compare numbers with the same number of decimal places up to two decimal places)	To order and compare numbers to at least $1,000,000$ and determine the value of each digit.	To order and compare numbers up to 10,000,000 accurately and determine the value of each digit.
	Understand the 'one more than/one less than' relationship between consecutive numbers. Number Rhymes Using Books: Maisy Goes Camping - Explore the composition of numbersto10. Have a deep understanding of numbers to 10 , including the composition of each number.		To recognise the place value of each digit in a two-digit number (tens, ones) to become fluent and apply their knowledge of numbers to reason with, discuss and solve problems. To begin to understand zero as a place holder. 6 Beads ** Two-digit Targets Snail One Hundred (G) * Digit Addition *	To recognise the place value of each digit in a three-digit number (hundreds, tens, ones) and apply partitioning related to place value using varied and increasingly complex problems, building on work in year 2 (for example, $146=100+40$ and $6,146=130+16)$. Which Scripts? * Coded Hundred Square (I) *	To recognise the place value of each digit in a four-digit number. The Deca Tree * The Thousands Game * Four-digit Targets Nice or Nasty (G) * Dicey Operations in Line (G) * To begin to extend their knowledge of the number system to include the decimal numbers and fractions that they have met so far.	To extend and apply their understanding of the number system to the decimal numbers and fractions that they have met so far	To use negative numbers in context, and calculate intervals across zero. First Connect Three (I) *

					To round any number to the nearest 10,100 or 1,000 (Fractions: round decimals with one decimal place to the nearest whole number)	To round any number up to $1,000,000$ to the nearest $10,100,1,000$, 10,000 and 100,000 (Fractions: round decimals with two decimal places to the nearest whole number and to one decimal place)	To round any whole number to a required degree of accuracy (Fractions: Solve problems which require answers to be rounded to specified degrees of accuracy)
				(Measurement: Tell/ write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24hour clocks)	To read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value.	To read Roman numerals to 1000 (M) and recognise years written in Roman numerals. Roman Numerals *	
E 0 0 0 0 0 0 0 0	Solve real world mathematical problems with numbers up to 5 . Begin to describe a sequence of events, real or fictional, using words such as 'first', 'then...'	To practise ordinal numbers and solve simple concrete problems.	To use place value and number facts to solve related problems to develop fluency. I Like ... * Light the Lights (I) ** Largest Even * Round the Two Dice	To solve numberproblems and practical problems involving these ideas.$\frac{\text { Number Differences * }}{\text { Magic Vs * }}$Number Match *Take Three Numbers *	To solve number and practical problems that involve all of the above and with increasingly large positive numbers.	To solve number problems and practical problems that involve all of the above.	To solve number and practical problems that involve all of the above Round the Four Dice * Number Lines in Disguise **

	Mathematics Progression Document						S West 2021
	EYFS $(30-50 \mathrm{mth}$ to ELGs $)$	Statutory Curri Non-Statutory Cur Teacher Assessm	S1 culum Guidance rriculum Guidance ment Framework		Statutory Curric Non-Statutory Cur	lum Guidance culum Guidance	
	Three and Four-Year-Olds Reception Early Learning Goals	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Develop fast recognition of up to 3 objects, without having to count them individually ('subitising'). Know that the last number reached when counting a small set of objects tells you how many there are in total ('cardinal principle’). Show 'finger numbers' up to 5. Subitise. Explore the composition of numbers to 10. Automatically recall number bonds for numbers 0-10. Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts. Have a deep understanding of numbers to 10 , including the composition of each number. Subitise (recognise quantities without counting) up to 5 . The Box Game The Voting Station	To add and subtract one-digit and two-digit numbers to 20 , including zero. To realise the effect of adding or subtracting zero. Two Dice * Number Balance * Find the Difference (I) Sort Them Out (1) *	To extend the language of addition and subtraction to include sum and difference. To show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot. To add and subtract numbers using an efficient strategy, explaining their method verbally using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones, a two-digit number and tens, two two-digit numbers, add three one-digit numbers. Jumping Squares ** Unit Differences Dicey Addition (G) *	To add and subtract numbers mentally, including: two-digit numbers, where the answers could exceed 100, a three-digit number and ones, a three-digit number and tens and a three-digit number and hundreds.	To continue to practise both mental methods and columnar addition and subtraction with increasingly large numbers to aid fluency.	To add and subtract numbers mentally with increasingly large numbers.	To perform mental calculations, including with mixed operations and large numbers.

Lytche 	Mathematics Progression Document						S West 2021
	EYFS $(30-50 \mathrm{mths}$ to ELGs $)$	KS1 Statutory Curriculum Guidance Non-Statutory Curriculum Guidance Teacher Assessment Framework		KS2 Statutory Curriculum Guidance Non-Statutory Curriculum Guidance			
	Three and Four-Year-Olds Reception Early Learning Goals	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Explore the composition of numbers to 10. Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed evenly.		To begin to use other multiplication tables and recall multiplication facts, including using related division facts to perform written and mental calculations. To begin to relate multiplication and division facts to fractions and measures (e.g., $40 \div 2=20,20$ is a half of 40). To show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot, to develop multiplicative reasoning.	To write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using efficient mental methods, for example, using commutativity and associativity, and progressing to formal reliable written methods of short multiplication and division. Which Symbol? *	To combine their knowledge of number facts and rules of arithmetic to solve mental and written calculations, e.g. 2×6 $\times 5=10 \times 6=60 .$ To practise mental methods and extend this to three-digit numbers to derive associative facts, (e.g. $600 \div 3=200$ can be derived from $2 \times 3=6$). To recognise and use factor pairs and commutativity in mental calculations. Multiply Multiples 1 * Multiply Multiples 2 * Multiply Multiples 3 * To use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers. Four Go (G) **	To multiply and divide numbers mentally drawing upon known facts. Picture Your Method Compare the Calculations	To perform mental calculations, including with mixed operations and large numbers (Fractions: associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. 3/8))

Explore and represent patterns within numbers up to
10 , including evens and odds, double facts and how
quantities can be
distributed evenly.

Mathematics Progression Document							S West 2021
$\begin{aligned} & \text { n } \\ & \frac{0}{0} \\ & \mathbf{0} \\ & \mathbf{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed evenly. Maths Story Time Two Halves Double Trouble Using Books: The Doorbell Rang	To solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher. Share Bears * Lots of Biscuits! * Doubling Fives *	To solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts. Magic Plant ** The Amazing Splitting Plant *** Catrina's Cards * The Tomato and the Bean *** Lots of Lollies *** Are You Well Balanced? (I) * Growing Garlic * Our Numbers Ip Dip * Birthday Sharing *		To solve two-step problems in contexts involving multiplying and adding, including using the distributive law to multiply twodigit numbers by one digit, integer scaling problems and harder correspondence problems, such as n objects are connected to m objects. Cubes Within Cubes *** Odd Squares Curious Number *** Division Rules	To solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes. To solve problems, including in missing number problems, involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign (to indicate equivalence). Highest and Lowest * Make 100 ** Four Goodness Sake *** Multiply Multiples 1 * Multiply Multiples 2 * Multiply Multiples 3 * To solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates.	To solve problems involving addition, subtraction, multiplication and division (Ratio and Proportion: solve problems involving similar shapes where the scale factor is known or can be found) To use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy. Always, Sometimes or Never? Number (I) *

Lytchett Matravers Primary School		Mathematics Progression Document					S West 2021
	EYFS (30-50mths to ELGs)	Statutory Curric Non-Statutory Cur Teacher Assessm	S1 culum Guidance riculum Guidance nent Framework		Statutory Curri Non-Statutory Cu	S2 culum Guidance rriculum Guidance	
	Three and Four-Year-Olds Reception Early Learning Goals	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
			To count in fractions up to 10, starting from any number and using the $\frac{-1}{\bar{x}}$ and ${ }_{4}^{\frac{z}{4}}$ equivalence on the number line.	To count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by ten.	To count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten.	To extend counting from year 4, using decimals and fractions including bridging zero, for example on a number line. To continue to practise counting forwards and backwards in simple fractions.	
		To recognise, find and name a half as one of two equal parts of an object, shape or quantity by solving problems. Happy Halving *** Halving ** Fair Feast * To recognise, find and name a quarter as one of four equal parts of an object, shape or quantity by solving problems. To connect halves and quarters to the equal sharing and grouping of sets of objects and to measures, as well as recognising and combining halves and quarters as parts of a whole.	To recognise, find, name, identify and and $\frac{5}{4}$ of a length, number, shape, set of objects or quantity and know that all parts must be equal parts of the whole. To connect unit fractions to equal sharing and grouping, to numbers when they can be calculated, and to measures, finding fractions of lengths, quantities, sets of objects or shapes. They meet $\frac{{ }_{4}^{4}}{4}$ as the first example of a non-unit fraction.	To understand the relation between unit fractions as operators (fractions of), and division by integers. To recognise, understand and use fractions as numbers: unit fractions and non-unit fractions with small denominators as numbers on the number line (going beyond 0-1 and relating this to measure), and deduce relations between them, such as size and equivalence. To recognise, find and write fractions of a discrete set of objects: unit fractions and nonunit fractions with small denominators. Fraction Match *	To make connections between fractions of a length, of a shape and as a representation of one whole or set of quantities. To know that decimals and fractions are different ways of expressing numbers and proportions. To understand the relation between nonunit fractions and multiplication and division of quantities, with particular emphasis on tenths and hundredths.	To identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths.	

Lytch	Matravers Primary School		Mathemat	Progression Document			S Wes
			To write simple fractions for example, $\frac{\underline{1}}{2}$ of $6=3$ and recognise the equivalence $\frac{2}{4}$ and $\frac{1}{2}$.	To recognise and show, using diagrams, equivalent fractions with small denominators. Matching Fractions :	To use factors and multiples to recognise equivalent fractions and simplify where appropriate. To recognise and show, using diagrams, families of common equivalent fractions. Fractional Triangles Fractional Wall Bryony's Triangle To recognise and write decimal equivalents of any number of tenths or hundredths. To recognise and write decimal equivalents to $\frac{1}{4}, \frac{1}{2}, \frac{2}{4}$.	To read and write decimal numbers as fractions. To recognise and use thousandths and relate them to tenths, hundredths, decimal equivalents and measures. \qquad To recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100, and as a decimal.	To recall and use equivalences between simple fractions, decimals and percentages, including in different contexts. Doughnut Percents ** To use common factors to simplify fractions; use common multiples to express fractions in the same denomination.
					To learn decimal notation and the language associated with it, including in the context of measurements. To represent numbers with one or two decimal places in several ways, such as on number lines. To compare numbers, amounts and quantities with the same number of decimal places up to two decimal places.	To read, say, write, order and compare numbers with up to three decimal places.	To identify the value of each digit in numbers given to three decimal places.
					To round decimals with one decimal place to the nearest whole number. Round the Dice Decimals 1 *	To round decimals with two decimal places to the nearest whole number and to one decimal place. Round the Dice Decimals 2	

	EYFS (30-50mths to ELGs)	KS1 Statutory Curriculum Guidance Non-Statutory Curriculum Guidance Teacher Assessment Framework		KS2 Statutory Curriculum Guidance Non-Statutory Curriculum Guidance			
	Three and Four-Year-Olds Reception Early Learning Goals	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Make comparisons between objects relating to size, length, weight and capacity. Compare length, weight and capacity. Order two or three items by length or height Making Caterpillars Long Creatures Sock Washing Line Wrapping Parcels Order two or three items by length or height Presents I Have a Box Mud Kitchen Cooking with Children Balances Water, Water ... The Spring Scale	 To compare, describe and solve practical problems for: lengths and heights, mass/weight, capacity and volume, time. Sizing Them Up * Wallpaper Thirsty? * The Animals' Sports Day Seesaw Shenanigans To measure and begin to record the following: lengths and heights, mass/weight, capacity and volume, time. How Tall? * Can You Do it Too? To move onto using manageable common standard units using measuring tools, such as a ruler, weighing scales and containers.	To choose and use appropriate standard units to estimate and measure length/height in any direction (m/ cm); mass (kg/g); temperature (${ }^{\circ} \mathrm{C}$); capacity (litres/ ml) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels. Little Man ** To use the appropriate language and record using standard abbreviations. To compare and order lengths, mass, volume/capacity and record the results using $>,<\text { and }=.$ To compare measures including simple multiples such as 'half as high'; 'twice as wide'. Making Longer, Making Shorter ** Order, Order! * Compare the Cups	To measure using the appropriate tools and units, compare (including simple scaling by integers) add and subtract using mixed units: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity (l/ml) Oh! Harry! ** Olympic Starters Car Journey	To estimate, compare and calculate different measures, including money in pounds and pence. Discuss and Choose	To use all four operations to solve problems involving measure using decimal notation, including scaling and conversions.	To use a number line, to add and subtract positive and negative integers for measures such as temperature. To solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate.

Lytche	atravers Primary School		Mathema	rogression Document			S West 2021
	Begin to describe a sequence of events, real or fictional, using words, such as 'first', 'then...' Timing	To sequence events in chronological order using language. Times of Day * The Games' Medals ** To recognise and use language relating to dates, including days of the week, weeks, months and years. Snap (G) * To tell the time to the hour and half past the hour and draw the hands on a clock face to show these times.	To read, tell and write the time to five minutes, including quarter past/to the hour/half hour and draw the hands on a clock face to show these times Stop the Clock (I) *** What Is the Time? To become fluent in telling the time on analogue clocks and recording it. To know the number of minutes in an hour and the number of hours in a day. Matching Time (G) * To compare and sequence intervals of time.	To tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24-hour clocks How Many Times? * Clocks * 5 on the Clock *** Two Clocks ** The Time Is ... ** Approaching Midnight To begin to use digital 12-hour clocks and record their times in preparation for using digital 24-hour clocks in year 4. To estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours. Watch the Clock *** Wonky Watches ** To use vocabulary such as o’clock, a.m./p.m., morning, afternoon, noon and midnight. To know the number of seconds in a minute and the number of days in each month, year and leap year. To compare durations of events.	To read, write and convert time between analogue and digital 12and 24-hour clocks. To solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days.	To solve problems involving converting between units of time.	

of a rectilinear figure (including squares) in centimetres and metres.

To know perimeter can be expressed
algebraically as $2(a+b)$ where a and b are the dimensions in the same
unit.

To find the area of rectilinear shapes by counting squares. Torn Shapes * Twice as Big? (I) *

To relate area to arrays and multiplication.

calculate the perimeter

 of composite rectilinear a shapes in centimetres and metres including using the relations of perimeter. Note: Missing measures questions can be expressed algebraically. Area and Perimeter * Through the Window **To calculate and
compare the area of rectangles (including squares), and including using standard units, square centimetres (cm^{2}) and square
metres (m^{2})
$\frac{\text { Making Boxes ** }}{\text { Numerically Equal }}$ Numerically Equa Fitted *** Brush Loads * Ribbon Squares square numbers and cube numbers, and the notation for ${ }^{2}$ and ${ }^{3}$)

To use the area of To use the area of
rectangles to find unknown lengths and estimate the area of irregular shapes.
Note: Missing measures questions can be expressed algebraically.

To calculate the area from scale drawings using given measurements.

S West 2021 To calculate, estimate and compare volume of cubes and cuboids using standard units; cubic centimetres (cm^{3}) and cubic metres (m^{3}), and extending to other units (for example, mm^{3} and km^{3}).

	Mathematics Progression Document						S West 2021
	EYFS $(30-50 \mathrm{mths}$ to ELGs)	KS1 Statutory Curriculum Guidance Non-Statutory Curriculum Guidance Teacher Assessment Framework		KS2 Statutory Curriculum Guidance Non-Statutory Curriculum Guidance			
	Three and Four-Year-Olds Reception Early Learning Goals	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Talk about and explore 2D and 3D shapes (for example, circles, rectangles, triangles and cuboids) using informal and mathematical language: ‘sides’, ‘corners’; ‘straight’, 'flat', 'round'. Select, rotate and manipulate shapes in order to develop spatial reasoning skills Exploring 2D Shapes Making a Picture Shapes in the Bag	To recognise, handle and name common 2D and 3 D shapes in different orientations/sizes and relate everyday objects fluently. Three Squares (I) *** Overlaps ** Jig Shapes What's Happening? * Always, Sometimes or Never? KS1 * To recognise that rectangles, triangles, cuboids and pyramids are not always similar to each other.		To describe the properties of 2D and 3D shapes using accurate language. To extend knowledge of the properties of shapes is extended at this stage to symmetrical and nonsymmetrical polygon and polyhedron. To recognise 3D shapes in different orientations and describe them. \qquad	To identify lines of symmetry in 2D shapes presented in different orientations. Let Us Reflect * Stringy Quads ** $\frac{\text { Counters in the Middle }}{*}$ To recognise line symmetry in a variety of diagrams, including where the line of symmetry does not dissect the original shape.	To identify 3D shapes, including cubes and other cuboids, from 2D representations.$\frac{\text { Guess What? * }}{\frac{\text { A Puzzling Cube * }}{\text { Third Dimension }}}$Inky Cube ***	To illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius. To express algebraically the relationship between angles and lengths.

Lytchett Matravers Primary School			Mathematic

To recognise angles as a property of shape or a description of a turn
 To identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn Seeing Squares (I) *
 To identify whether angles are greater than or less than a right angle.

To identify acute and
obtuse angles and obtuse angles and angles up to two right angles by size in preparation for using a protractor.

To know angles are measured in degrees; estimate and compare acute, obtuse and reflex angles
Estimating Angles (I)
To draw given angles, and measure them in degrees
How Safe Are You? * Six Places to Visit * The Numbers Give the Design
Olympic Turns ***
To identify: angles at a point and one whole turn (total 360°), angles at a point on a straight line and $\frac{11}{2}$ a turn (total 180°) and other multiples of
90°.
To use the term diagona and make conjectures about the angles formed
between sides, and between diagonals and parallel sides.
To use the properties of rectangles to deduce related facts and find missing lengths and angles by using angle sum facts and other properties to make deductions about missing angles and relate these to missing number problems. Making Rectangles **

To recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles

	EYFS (30-50mths to ELGs)	KS1 Statutory Curriculum Guidance Non-Statutory Curriculum Guidance Teacher Assessment Framework		KS2 Statutory Curriculum Guidance Non-Statutory Curriculum Guidance			
	Three and Four-Year-Olds Reception Early Learning Goals	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Understand position through words alone - for example, "The bag is under the table," - with no pointing. Describe a familiar route. Discuss routes and locations, using words like 'in front of' and 'behind'. Draw information from a simple map Paths Position with Wellies Scooters, Bikes and Trikes Small World Play	To describe position, direction and movement, including whole, half, quarter and three-quarter turns in both directions and connect clockwise with the movement on a clock face. $\frac{\text { Tangram Tangle *** }}{2 \text { Rings ** }}$ $\frac{\text { Turning (1) * }}{\text { Olympic Rings ** }}$ To use the language of position, direction and motion, including: left and right, top, middle and bottom, on top of, in front of, above, between, around, near, close and far, up and down, forwards and backwards, inside and outside.	To use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anticlockwise). Coloured Squares (I) ** Cover the Camel Triangle Animals ** Turning Man (I) * En-counters Walking Round a Triangle *		To describe positions on a 2D grid as coordinates in the first quadrant. Coordinate Challenge * Eight Hidden Squares ** To draw a pair of axes in pne quadrant, with equal scales and integer labels. To read, write and use pairs of coordinates, including using coordinate plotting ICT tools. To plot specified points and draw sides to complete a given polygon. A Cartesian Puzzle * To describe movements between positions as translations of a given unit to the left/right and up/down.	To identify, describe and represent the position of a shape following a reflection (in lines that are parallel to the axes) or translation, using the appropriate language, and know that the shape has not changed Transformations on a Pegboard * More Transformations on a Pegboard (I) **	To draw and label a pair of axes in all four quadrants with equal scaling. To describe positions on the full coordinate grid (all four quadrants). Ten Hidden Squares *** Treasure Hunt (I)* To draw and label simple shapes - rectangles (including squares), parallelograms and rhombuses, specified by coordinates in the four quadrants, predicting missing coordinates using the properties of shapes. To translate simple shapes where coordinates may be expressed algebraically on the coordinate plane and reflect them in the axes.

	Mathematics Progression Document						S West 2021
	EYFS (30-50mths to ELGs)	KS1 Statutory Curriculum Guidance Non-Statutory Curriculum Guidance Teacher Assessment Framework		KS2 Statutory Curriculum Guidance Non-Statutory Curriculum Guidance			
	Three and Four-Year-Olds Reception Early Learning Goals	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
			$\left.\begin{array}{\|c\|}\text { To record, interpret, } \\ \text { collate, organise and } \\ \text { compare information. } \\ \text { To interpret and } \\ \text { construct simple } \\ \text { pictograms, tally charts, } \\ \text { block diagrams and } \\ \text { simple tables (e.g. } \\ \text { many-to-one } \\ \text { correspondence in } \\ \text { pictograms with simple } \\ \text { ratios 2, 5, 10 scales). } \\ \text { What Shape and Colour? } \\ \hline \text { * } \\ \text { Ladybird Count * } \\ \text { Sticky Data * } \\ \frac{\text { Carroll Diagrams (I) * }}{\text { To ask and answer }} \\ \text { simple questions by } \\ \text { counting the number of } \\ \text { objects in each category } \\ \text { and sorting the }\end{array}\right\}$categories by quantity $\frac{\text { Sort the Street (I) * }}{\text { To ask and answer }}$questions about totalling and comparing categorical data.	$\left.\begin{array}{c}\text { To interpret and } \\ \text { present data using bar } \\ \text { charts, pictograms and } \\ \text { tables and use simple } \\ \text { scales with increasing } \\ \text { accuracy } \\ \text { Real Statistics * }\end{array}\right\}$The Car That Passes * $\frac{\text { Class 5's Names * }}{\text { The }}$Domesday Project $\frac{\text { If the World Were a }}{\text { Village * }}$ Our Sports * * Gow for Gold ** Nownen **	To understand and use a greater range of scales in data representations. To interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs Take Your Dog for a Walk (I) ** Venn Diagrams *	To begin to decide which representations of data are most appropriate and why. To connect coordinates and scales to the interpretation of time graphs. To complete, read and interpret information in tables, including timetables.	To connect conversion from kilometres to miles in measurement to its graphical representation. To connect work on angles, fractions and percentages to the interpretation of pie charts. To interpret and construct pie charts and line graphs (relating to two variables) and use these to solve problems.
$\begin{aligned} & \text { 气 } \\ & \frac{0}{0} \\ & 0 \\ & 00 \\ & 0 \\ & \vdots \\ & 0 \end{aligned}$				To solve one-step and two-step questions using information presented in scaled bar charts and pictograms and tables.	To solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs How Big Are Classes 5, 6 and 7?	To solve comparison, sum and difference problems using information presented in a line graph.	To know when it is appropriate to find the mean of a data set. To calculate and interpret the mean as an average Birdwatch *

						\|l	To recognise roportionality in context when the relations between quantities are ir the same ratio, e.g. recipes. To solve problems nvolving the relative size of two quantities where missing values can be found by using integer nultiplication and divisior facts. Pumpkin Pie Problem ** Rectangle Tangle * Orange Drink ** Fraction Fascination *** Jumping To solve problems pvolving the calculation o ercentages and the use o percentages for comparison including linking percentages or 360° to calculating angle of pie chart. To solve problems involving similar shapes where the scale factor is known or can be found. To solve problems involving unequal quantities, sharing and grouping using knowledge of fractions and multiples In the Money **

